

5164 5164 - (4 · 541 - 254

164-2-- 82 -87 -69 49 36 25 -16and y

Definition: Ratio

A comparison btwn 2 values or sets of things.

Often helpful to make sure both use same units.

3 ways to write a Ratio...

Using "to": 5 is to 7 Using colon: 5:7Fraction: $\frac{5}{7}$ for 5:7

3 squares to 6 círcles

3 squares to 6 círcles

A statement that 2 ratios are equal.

- A statement that 2 ratios are equal.
- Example:

- A statement that 2 ratios are equal.
- Example:

$$\frac{a}{b} = \frac{x}{y}$$

A statement that 2 ratios are equal. Example: $\frac{a}{b} = \frac{x}{y}$ or a:b = x:y

A statement that 2 ratios are equal. Example: $-\frac{a}{b} = \frac{x}{y}$ or a:b = x:ya is to b

A statement that 2 ratios are equal. Example: $\frac{a}{b} = \frac{x}{y}$ or a:b = x:ya is to b

A statement that 2 ratios are equal. Example: $\frac{a}{b} = \frac{x}{y}$ or a:b = x:ya is to b

A statement that 2 ratios are equal. Example: $\frac{a}{b} = \frac{x}{y}$ or a:b = x:ya is to b as

A statement that 2 ratios are equal. Example: $\frac{a}{b} = \frac{x}{y}$ or a:b = x:ya is to b as x is to y

A statement that 2 ratios are equal. Example: $\frac{a}{b} = \frac{x}{y}$ or a:b = x:y $\frac{3}{4} = \frac{9}{12}$ a is to b as x is to y $\frac{3}{4} = \frac{15}{12}$

Properties of Proportions

$$\int \frac{a}{b} = \frac{c}{d}$$

Properties of Proportions

$$\int \frac{a}{b} = \frac{c}{d} \qquad ?$$
Then 1) ad = bc (cross product)

$$\frac{a \cdot db}{b} = \frac{c \cdot b}{d}$$
ad = cb

Properties of Proportions

If
$$\frac{a}{b} = \frac{c}{d}$$

Then 1) ad = bc (cross product)
2) $\frac{b}{a} = \frac{d}{c}$ (Flip both)
3) $\frac{a}{c} = \frac{b}{d}$ (Swap 1 numerator \$ other denon)
4) $\frac{a+b}{b} = \frac{c+d}{d}$ (add denom to numerator denom)

2

A B

С

D

B			Yard		
			Driveway		
	Garage	Door	Closet	Living	
	Stairs	Bath	Door *	Exterior Door	Porch Stairs
		Exterior	Kitchen	1.	
Å	Porch		Storage •	<u> </u>	Yard
0		Stairs 10	lm		
Ľ				Yard	

Scale Drawing

A drawing that represents a real object drawn with the same proportions.

The scale of the drawing is the ratio of the size of the drawing to the actual size of the object.

Scale Drawing

A drawing that represents a real object drawn with the same proportions.

The scale of the drawing is the ratio of the size of the drawing to the actual size of the object.

Scale Drawing

A drawing that represents a real object drawn with the same proportions.

The scale of the drawing is the ratio of the size of the drawing to the actual size of the object.

Scale Drawing Example

1) Two cities are $3^{1}/_{2}^{"}$ apart on a map w/scale 1" = 50 mi. Find the actual distance.

2 length?

Scale Drawing Example

The length of a stadium is 100yds & its width is 75yds. If 1 inch represent 25 yards, what are the dimensions of the stadium drawn on the sheet of paper (in inches)?

2) Length = ?
$$\frac{100}{25} = 4$$
 (1 : 2574^{5})
3) Width = ? $\frac{15}{25}$

3 width?

$$ax^{2} + bx + c = 0, a \neq 0$$

$$ax^{2} + bx + c = 0, a \neq 0$$

standard form

$$ax^{2} + bx + c = 0, a \neq 0$$

standard form all variables on one side

 $ax^{2} + bx + c = 0, a \neq 0$ standard form

all variables on one side set equal to zero

 $ax^{2} + bx + c = 0, a \neq 0$ standard form

all variables on one side set equal to zero

 $3x^2 - 7x + 12 = 0$

ax² + bx + c = 0, a
$$\neq 0$$

standard form all variables on one side
set equal to zero
 $3x^{2} - 7x + 12 = 0$ $-2x^{2} + 16x - 3 = 0$

ax² + bx + c = 0, a
$$\neq 0$$

standard form all variables on one side
set equal to zero
 $3x^{2} - 7x + 12 = 0$
 $-2x^{2} + 16x - 3 = 0$
 $a = 3$
 $b = -7$
 $c = 12$
 $c = -3$

Quadratic Formula Review

To solve
$$ax^2 + bx + c = 0$$
 for x use

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Quadratic Formula Review

To solve
$$ax^2 + bx + c = 0$$
 for x use

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Equation *MUST* be in standard form!

Solve
$$7x^2 + 6x - 1 = 0$$

Solve
$$7x^2 + 6x - 1 = 0$$

1) Write the formula:

Solve
$$7x^2 + 6x - 1 = 0$$

1) Write the formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Solve
$$7x^2 + 6x - 1 = 0$$

1) Write the formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

2) |dentífy a, b, & c:

Solve
$$7x^{2} + 6x - 1 = 0$$

1) Write the formula: $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$
2) Identify a, b, & c:
 $a = 7$
 $b = 6$
 $c = -1$
3) Plug in the values & solve.

Solve
$$7x^2 + 6x - 1 = 0$$

1) Write the formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
2) Identify a, b, & c:
 $a = 7$
 $b = 6$
 $c = -1$
3) Plug in the values & solve.
4) Use parentheses!!!

Solve
$$7x^{2} + 6x - 1 = 0$$

1) Write the formula: $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$
2) Identify a, b, & c:
 $a = 7$
 $b = 6$
 $c = -1$
3) Plug in the values & solve.
4) Use parentheses!!!
5) MUST BE IN STANDARD FORM!!!
 $x = \frac{-(2) \sqrt{b}(-1)}{14}$
 $x = \frac{-(2) \sqrt{b}(-1)}{14}$

Quadratic Formula Example
Solve:
$$-3x^2 - 5x + 5 = 4$$

*Not (N) 5tD FORM. *
 $-3x^2 - 5x + 1 = D$ $x = \frac{-b\pm \sqrt{b^2 - 4cc}}{2c}$ where $x = \frac{-b\pm \sqrt{b^2 - 4cc}}{2c}$ where $x = \frac{-b\pm \sqrt{b^2 - 4cc}}{2c}$ where $x = \frac{-b\pm \sqrt{b^2 - 4cc}}{2c}$ is the example
 $a = -3$
 $b = -5$ $x = -\frac{(-5)\pm \sqrt{(-5)^2 - 4(-3)(1)}}{2(-3)}$ where $x = \frac{-b\pm \sqrt{b^2 - 4cc}}{2(-3)}$ is the example
 $a = -5$ $x = -\frac{(-5)\pm \sqrt{(-5)^2 - 4(-3)(1)}}{2(-3)}$ is the example
 $a = -5$ $x = -\frac{(-5)\pm \sqrt{(-5)^2 - 4(-3)(1)}}{2(-3)}$ is the example
 $a = -5$ $x = -\frac{(-5)\pm \sqrt{(-5)^2 - 4(-3)(1)}}{2(-3)}$ is the example
 $a = -5$ $x = -\frac{(-5)\pm \sqrt{(-5)^2 - 4(-5)(1)}}{2(-3)}$ is the example
 $a = -5$ $x = -\frac{(-5)\pm \sqrt{(-5)^2 - 4(-5)(1)}}{2(-3)}$ is the example
 $a = -5$ $x = -\frac{(-5)\pm \sqrt{(-5)^2 - 4(-5)(1)}}{2(-3)}$ is the example
 $a = -5$ $x = -\frac{(-5)\pm \sqrt{(-5)^2 - 4(-5)(1)}}{2(-3)}$ is the example
 $a = -5$ $x = -\frac{(-5)\pm \sqrt{(-5)^2 - 4(-5)(1)}}{2(-3)}$ is the example
 $a = -5$ $x = -\frac{(-5)\pm \sqrt{(-5)^2 - 4(-5)(1)}}{2(-3)}$ is the example
 $a = -5$ $x = -\frac{(-5)\pm \sqrt{(-5)^2 - 4(-5)(1)}}{2(-3)}$ is the example
 $a = -5$ $x = -\frac{(-5)\pm \sqrt{(-5)^2 - 4(-5)(1)}}{2(-3)}$ is the example
 $a = -5$ $x = -\frac{(-5)\pm \sqrt{(-5)^2 - 4(-5)(1)}}{2(-3)}$ is the example
 $a = -5$ $x = -\frac{(-5)\pm \sqrt{(-5)^2 - 4(-5)(1)}}{2(-3)}$ is the example
 $a = -5$ $x = -\frac{(-5)\pm \sqrt{(-5)^2 - 4(-5)(1)}}{2(-3)}$ is the example
 $a = -5$ $x = -\frac{(-5)\pm \sqrt{(-5)^2 - 4(-5)(1)}}{2(-3)}$ is the example
 $a = -5$ $x = -\frac{(-5)\pm \sqrt{(-5)^2 - 4(-5)(1)}}{2(-3)}$ is the example
 $a = -5$ $x = -\frac{(-5)\pm \sqrt{(-5)^2 - 4(-5)(1)}}{2(-5)}$ is the example
 $a = -5$ $x = -\frac{(-5)\pm \sqrt{(-5)^2 - 4(-5)(1)}}{2(-5)}$ is the example
 $a = -5$ $x = -\frac{(-5)\pm \sqrt{(-5)^2 - 4(-5)(1)}}{2(-5)}$ is the example
 $a = -\frac{(-5)\pm \sqrt{(-5)^2 - 4(-5)(1)}}{2(-5)}$ is the example
 $a = -\frac{(-5)\pm \sqrt{(-5)^2 - 4(-5)(1)}}{2(-5)}$ is the example
 $a = -\frac{(-5)\pm \sqrt{(-5)^2 - 4(-5)(1)}}{2(-5)}$ is the example
 $a = -\frac{(-5)\pm \sqrt{(-5)^2 - 4(-5)}}{2(-5)}$ is the example
 $a = -\frac{(-5)\pm \sqrt{(-5)^2 - 4(-5)}}{2(-5)}$ is the example
 $a = -\frac{(-5)\pm \sqrt{(-5)^2 - 4(-5)}}{2(-5)}$ is the example
 $a = -\frac{(-5)$

L8.1 HW Assignment

Pg 418 #1-21, 26-33, 35-43, 45-47, 59-66 Pg 422 #1-9